Volume 6 Issue 4 November - January 2019
Research Paper
Peak Power Tracking Technique for a Small-Scale Photovoltaic System
Amine Daoud*
* Department of Electronics, Faculty of Electrical Engineering, University of Sciences and Technology of Oran, Oran, Algeria.
Daoud, A. (2019). Peak Power Tracking Technique for a Small-Scale Photovoltaic System. i-manager’s Journal on Power Systems Engineering, 6(4), 22-36. https://doi.org/10.26634/jps.6.4.16047
Abstract
A photovoltaic (PV) generator can directly transform the sun's rays into usable electric power. The power-voltage characteristic of PV generator is highly nonlinear and its optimal power point varies with sunlight intensity and temperature. Thus, to increase the efficiency of a PV system, it is important to track the optimal power point instantly. This paper presents a simple variable step-size maximum power point tracking (MPPT) technique for a small-scale PV system. The latter is composed of a PV array, a DC/DC power converter, and a DC motor-pump. Furthermore, using this technique, only the output voltage of the switching converter needs to be sensed in order to track the optimal power point. Compared with classical Perturbation & Observation (P&O) technique, the proposed MPPT technique can largely improve the MPPT efficiency and the total volume of water pumped a day. Also for comparison purpose, the artificial neural network (ANN) based MPPT technique is addressed in this manuscript. Moreover, the MPPT techniques considered in this study are applied to a solar-powered water pumping system under different climate conditions. Finally, mathematical modeling and computer simulations of such small-scale PV system are performed using the MATLAB environment.
No comments:
Post a Comment